154. Asymmetric Dihydroxylations of $\boldsymbol{\beta}$-Substituted \boldsymbol{N}-(α, β-Enoyl)bornane-10,2-sultams
by Wolfgang Oppolzer* and Jean-Pierre Barras
Département de Chimie Organique, Université de Genève, CH-1211 Genève 4

(18.VIII.87)

Pure (E)- or (Z)-enoylsultams 2 were oxidized with OsO_{4} / N-methylmorpholine N-oxide in a stereospecific and highly π-face-selective manner. Acetalization of the resulting I, 2 -diols furnished, after purification, the stable, crystalline acetals 6 in $>99 \%$ d.e. and in $63-74 \%$ overall yield from 2. Reductive or hydrolytic cleavage of 6 gave enantiomerically pure alcohols $\mathbf{8}$ or carboxylic acids 9 with recovery of the sultam auxiliary 1 .

Introduction. - Stoichiometric or catalytic oxidations of olefins by OsO_{4} provide a reliable and stereospecific route to vicinal diols [1]. Asymmetric versions of this process deserve particular attention considering the value of enantiomerically and diasteroisomerically pure diol derivatives \mathbf{B} and \mathbf{D} as building blocks for syntheses of polyoxygenated compounds. Promising π-face differentiations have already been achieved by osmylations of either prochiral alkenes in the presence of chiral ligands [2] or of olefinic bonds attached to a removable chiral auxiliary [3][4]. As a follow-up of preliminary reports [5][6], we describe here a practical $\mathrm{C}(\alpha)$ - $R e$-face-selective dihydroxylation of β-substituted enoyl derivatives $\mathbf{C} \rightarrow \mathbf{D}$ which complements the existing methodology.

Exploiting the topological bias of the sultam chirophor $1\left(\mathrm{X}^{*}{ }_{\mathrm{Re}} \mathrm{H}\right)$ [6] and taking into account that both enantiomers of 1 are readily and commercially available, both topicities $\mathrm{C}(\alpha)$-Si and $\mathrm{C}(\alpha)-R e$ can be efficiently achieved $(c f . \mathbf{A} \rightarrow \mathbf{B}$ and $\mathbf{C} \rightarrow \mathbf{D}$, respectively; Scheme 1).

Scheme 1

(1) OsO4 cat. [0]
(2) $-\mathrm{X}^{*} \mathrm{H}$

C
D

Preparation and Dihydroxylation of \boldsymbol{N}-Enoylsultams 2. - Sultam 1 was conveniently acylated by treatment with either NaH and enoyl chlorides or with methyl enoates $/ \mathrm{Me}_{3} \mathrm{Al}$ to give enoylsultams 2 in good yields. The latter, also available via the alkynoylsultams 3 by partial hydrogenation $(\rightarrow \mathbf{2 b})$ or 1,4 -addition of $\mathrm{Me}_{2} \mathrm{CuLi}(\rightarrow \mathbf{2} \mathbf{e})$, were easily purified by crystallization (Scheme 2).

Scheme 2

1

3

Oxidation of the β-substituted (α, β-enoyl)sultams 2 with $\mathrm{OsO}_{4}(0.3$ mol-equiv., DMF/ t - $\mathrm{BuOH},-20^{\circ}, 5 \mathrm{~h}$) in the presence of N-methylmorpholine N-oxide monohydrate (2 mol-equiv.) provided glycols $4 / 5$ which were converted ($\mathrm{Me}_{2} \mathrm{C}=\mathrm{O} / \mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2} \mathrm{l}: 1$, cat. TsOH) to the corresponding dimethyl acetals $6 / 7$ (Scheme 3, Table).

The reaction mixtures were directly analyzed by capillary GC showing product ratios 6/7 of $90: 10$ to $95: 5$. Analogous osmylations of 2 using trimethylamine N-oxide as a secondary oxidant [1] proceeded slower to furnish similar ratios of diasteroisomers 6/7. Facile separation of the latter by flash chromatography (Entries a, c-e) or crystallization (Entry b) gave the crystalline major products 6 in $->99 \%$ d.e. ($63-79 \%$ yields from 2). Depending on the (E / Z)-configuration of the enoylsultam 2, the formation of a tertiary

Table. Asymmetric Dihydroxylations/Acetalizations $2 \rightarrow 4 / 5 \rightarrow 6 / 7$

Entry	R^{1}	R^{2}	Yield [\%] 6/7 (crude)	Ratio 6/7 (crude)	Yield [\%]6 (pure)	d.e. [\%]6 (pure)
a	Me	H	84	$90: 10$	74	>99
b	H	Me	90	$91: 9$	66	>99
c	Pr	H	89	$91.5: 8.5$	79	>99
d	Et	Me	78	$95: 5$	63	>99
e	Me	Et	78	$90: 10$	67	>99

Scheme 3

or quaternary center at $\mathrm{C}(\beta)$ could be directed in either sense with comparable selectivity ($c f$. Entries $a / b, d / e$). Reductive ($\mathrm{LiAlH}_{4}, \mathrm{THF}$) or hydrolytic (LiOH , aq. THF, r.t.) cleavage of 6 regenerated the sultam $1(82-96 \%)$ and gave enantiomerically pure alcohols $8(75-82 \%)$ or carboxylic acids $9(92-94 \%)$, respectively. The absolute configurations of 8 and 9 were assigned by comparing their optical rotations with values reported in the literature.

To explain the observed π-face differentiations we postulate a reactive conformation (Scheme 4) of 2 featuring a 'syn'-orientation of the $\mathrm{C}=\mathrm{O}$ and SO_{2} groups, s-cis-related $\mathrm{C}=\mathrm{O} / \mathrm{C}(\alpha)-\mathrm{C}(\beta)$ bonds, and an approach of the reagent from the less hindered $\mathrm{C}(\alpha)-R e$ (bottom) face ${ }^{1}$). Such a conformation would suffer from repulsion between an α-substituent and the bornane skeleton. It was, therefore, not unexpected that tigloylsultam 11 underwent analogous osmylation much slower with low (ca. 20% d.e.) π-facial selectivity to give after acetalization a mixture of products 12 and $\mathbf{1 3}^{\mathbf{2}}$).
${ }^{1}$) The postulated 'syn'-disposition of the $\mathrm{C}=\mathrm{O}$ and SO_{2} groups may be due to a chelation by an Os -atom. An alternative explanation for the observed π-facial discrimination implies a conformation of 2 with 'anti'-disposed $\mathrm{C}=\mathrm{O}$ and SO_{2} groups, s-cis-related $\mathrm{C}=\mathrm{O} / \mathrm{C}(\alpha)-\mathrm{C}(\beta)$ bonds and a stereoelectronically controlled attack by OsO_{4} from the top face.
${ }^{2}$) For presumably similar reasons catalytic hydrogenations [7] or 1,4-hydride additions [8] of N-(α, β -enoyl)bornane-10,2-sultams showed π-face differentiations to depend significantly on the presence or absence of a substituent at $C(\alpha)$. In contrast, tiglate esters of chiral secondary alcohols could be dihydroxylated with up to 67% stereoface selectivity consistent with the s-trans-relation of $\mathrm{C}=\mathrm{O} / \mathrm{C}(\alpha)-\mathrm{C}(\beta)$ bonds [4].

2

Scheme 4

Conclusion. - We conclude that the described asymmetric dihydroxylations of enoyl derivatives 2 exemplify the general advantages associated with the sultam chirophor 1 [6]. The preparative value of this methodology is highlighted by the demonstrated potential of acetals 8 and 9 (as well as of their antipodes) as intermediates for the syntheses of enantiomerically pure deoxy- [9] and amino-sugars [10] (e.g. daunosamine, acosamine), of $(-)$-viridofloric acid [11], (-)-dihydromahubanolide B [12], biopterin [13], Scolytusmultistriatus pheromone [14], fungal metabolite LLP-880 β [15], and α, β-dihydroxymethylvaleric acid [16].

Financial support of this work by the Swiss National Science Foundation, Sandoz AG, Basel, and Givaudan SA, Vernier, is gratefully acknowledged. We also thank Mr. J. P. Saulnier, Mr. A. Pinto, and Mrs. D. Clément for NMR and MS measurements.

Experimental Part

General. All reactions were carried out under Ar with magnetic stirring, unless otherwise specified. Solvents were dried by distillation from drying agents as follows: $\mathrm{Et}_{2} \mathrm{O}$; THF (Na); toluene (K); t - BuOH (Fluka) was stirred in the presence of KMnO_{4} at r.t. for 2 d , filtered, and distilled over KMnO_{4}. CuI was purified by continuous extraction with THF over 48 h using a Soxhlet extractor in the dark. 'Workup' denotes extraction with an org. solvent, washing of the org. phase with sat. aq. NaCl soln., drying $\left(\mathrm{MgSO}_{4}\right)$, and removal of solvent by distillation in vacuo using a rotatory evaporator. Column flash chromatography (FC): SiO_{2} (Merck 9385). GC: HewlettPackard 5790A, integrator HP 3390, capillary column (fused silica, 0.2 mm i.d. 12 m), $O V-1,10 \mathrm{psi} \mathrm{H}_{2}$, unless otherwise specified; t_{R} in $\min ($ area $\%$). M.p.: Kofler hot stage; uncorrected. [α]: Perkin-Elmer-241 polarimeter; in CHCl_{3}, unless otherwise specified; IR: Perkin-Elmer $257, \mathrm{CHCl}_{3}$ unless otherwise specified. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ at 360 MHz , unless otherwise specified; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ at 50 MHz , unless otherwise specified; standard TMS $(=0 \mathrm{ppm}) ; J$ in Hz . MS: m / z (rel. \%).

Preparation of \boldsymbol{N}-Enoylsultams 2. - (2R)-Bornane-10,2-sultam (1). Auxiliary 1 was prepared from (+)-(1S)-camphor-10-sulfonyl chloride following the procedure described for the preparation of its antipode [17]. M.p. $182-184^{\circ} .[\alpha]_{\mathrm{D}}=-31.3^{\circ},[\alpha]_{578}=-32.8^{\circ},[\alpha]_{546}=-37.6^{\circ},[\alpha]_{436}=-66.2^{\circ},[\alpha]_{365}=-109.3^{\circ}\left(c=1.00, T=22^{\circ}\right) . \mathrm{IR}$, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and MS: identical to those reported for the antipode [17].

N - (E)-2-Butenoyl]bornane-10,2-sultam (2a). A soln. of $1(2.25 \mathrm{~g}, 10.5 \mathrm{mmol})$ in toluene (25 ml) was added dropwise at r.t. to a stirred suspension of NaH ($55-60 \%$ dispersion in mineral oil, $0.685 \mathrm{~g}, 15.8 \mathrm{mmol}$). After 30 min , a soln. of (E)-crotonoyl chloride ($1.296 \mathrm{~g}, 12.4 \mathrm{mmol}$) in toluene (5 ml) was added slowly and the mixture was stirred at r.t. for 90 min . Addition of ice water (30 ml), extraction of the aq. phase with AcOEt, drying of the combined org. phases $\left(\mathrm{MgSO}_{4}\right)$, evaporation, and chromatography (hexane/AcOEt 7:3), and crystallization from MeOH gave $2 \mathrm{a}(2.40 \mathrm{~g}, 81 \%)$. GC $\left(150^{\circ} \rightarrow 10^{\circ} / \mathrm{min} \rightarrow 270^{\circ}\right): 5.0$. M.p. $186-187^{\circ} .[\alpha]_{\mathrm{D}}=-99.5^{\circ},[\alpha]_{578}=-104.0^{\circ}$, $[\alpha]_{546}=-118.7^{\circ},[\alpha]_{436}=-209.7^{\circ},[\alpha]_{365}=-369.0^{\circ}\left(c=1.04, T=22^{\circ}\right)$. IR: 2960, 1685,1643,1335,1295,1260, 1230, 1210, 1135. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.98(s, 3 \mathrm{H}) ; 1.18(s, 3 \mathrm{H}) ; 1.3-1.4(2 \mathrm{H}) ; 1.8-2.0(6 \mathrm{H}) ; 2.05-2.2(2 \mathrm{H}) ; 3.45(d$, $J=13.5,1 \mathrm{H}) ; 3.52(d, J=13.5,1 \mathrm{H}) ; 3.95(d d, J=5,7.5,1 \mathrm{H}) ; 6.61(d q, J=15,2,1 \mathrm{H}) ; 7.11(\operatorname{sext} ., J=7,1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: 164.0(\mathrm{~s}) ; 145.94(\mathrm{~d}) ; 122.42(d) ; 65.14(d) ; 53.17(t) ; 48.44(\mathrm{~s}) ; 47.77(\mathrm{~s}) ; 44.75(\mathrm{~d}) ; 38.52(t) ; 32.87(t)$; $26.50(t) ; 20.81(q) ; 19.88(q) ; 18.26(q) . \mathrm{MS}: 283\left(3, \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}^{+}\right), 204(10), 134(8), 69$ (100), 41 (25). HR-MS: $283.1244\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}^{+}\right.$, calc. 283.1242).

N - (E)-2-Hexenoyl/bornane-10,2-sultam (2c). Oxalyl chloride ($7.425 \mathrm{~g}, 60 \mathrm{mmol}$) was added dropwise to a soln. of (E)-2-hexenoic acid $(3.40 \mathrm{~g}, 30 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$. Stirring of the mixture for 14 h at r.t., evaporation of $\mathrm{Et}_{2} \mathrm{O}$, and distillation of the residue furnished (E)-2-hexenoyl chloride ($3.58 \mathrm{~g}, 90 \%$). Following the procedure described for 2 a , acylation of $1(2.00 \mathrm{~g}, 9.3 \mathrm{mmol})$ with (E)-2-hexenoyl chloride ($1.54 \mathrm{~g}, 11.7 \mathrm{mmol}$) followed by crystallization (hexane) furnished $2 \mathrm{c}(2.18 \mathrm{~g}, 75 \%)$. GC (200°): 4.23. M.p. $96-97^{\circ} .[\alpha]_{\mathrm{D}}=-93.82^{\circ},[\alpha]_{578}=-97.97^{\circ}$, $[\alpha]_{546}=-111.86^{\circ},[\alpha]_{436}=-198.15^{\circ},[\alpha]_{365}=-349.60^{\circ}\left(c=4.125, \mathrm{CHCl}_{3}, T=20^{\circ}\right)$. IR: $2960,2880,1685,1640$, $1460,1335,1270,1120,1060,980$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.94(t, J=7.5,3 \mathrm{H}) ; 0.98(s, 3 \mathrm{H}) ; 1.19(s, 3 \mathrm{H}) ; 1.3-1.45(2 \mathrm{H}) ; 1.52$ (sext., $J=7.5,2 \mathrm{H}) ; 1.8-2.0(3 \mathrm{H}) ; 2.05-2.2(2 \mathrm{H}) ; 2.23(d q, J=1,7.5,2 \mathrm{H}) ; 3.42(d, J=14,1 \mathrm{H}) ; 3.50(d, J=14$, $1 \mathrm{H}) ; 3.92(d d, J=5,7.5,1 \mathrm{H}) ; 6.55(d t, J=15.5,1.5,1 \mathrm{H}) ; 7.07(d t, J=15.5,7.5,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 164.09(s)$; $150.62(d) ; 120.93(d) ; 65.06(d) ; 53.09(t) ; 48.40(s) ; 47.73(s) ; 44.67(d) ; 38.48(t) ; 34.46(t) ; 32.79(t) ; 26.45(t)$; $21.25(t) ; 20.84(q) ; 19.85(q) ; 13.65(q) . \mathrm{MS}: 311\left(6, \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}^{+}\right), 204(40), 97(100), 68(12), 55(100)$. HR-MS: $311.1544\left(\mathrm{C}_{10} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}^{+\cdot}\right.$, calc. 311.1555$)$.

Methyl (E)-3-Methyl-2-pentenoate. At $-40^{\circ}, 0.9 \mathrm{NEtLi}$ in $\mathrm{Et}_{2} \mathrm{O}(42 \mathrm{ml}, 37.8 \mathrm{mmol})$ was added dropwise over 1520 min to a suspension of $\mathrm{CuI}(7.18 \mathrm{~g}, 37.8 \mathrm{mmol})$ in THF (120 ml). Stirring of the mixture at -40° for 30 min followed by slow addition of a soln. of methyl 2-butynoate ($3.37 \mathrm{~g}, 34 \mathrm{mmol}$; over 1 h using a syringe pump) in THF (10 ml) at -78°, stirring at -78° for another 90 min , addition of $\mathrm{MeOH}(2 \mathrm{ml})$, warming up to -20°, addition of sat. aq. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ soln. (5 ml), filtration through Celite, extraction of the aq. phase with $\mathrm{Et}_{2} \mathrm{O}$, washing of the combined org. phases with 25% aq. NH_{3} and aq. sat. NaCl soln., drying $\left(\mathrm{MgSO}_{4}\right)$, evaporation, and bulb-to-bulbdistillation of the residue furnished methyl (E)-3-methyl-2-pentenoate ($3.49 \mathrm{~g}, 79 \%$). B.p. (bath) $95-105^{\circ} / 12 \mathrm{Torr}$. $\mathrm{GC}\left(5 \mathrm{psi}, 50^{\circ}\right): 4.57(95 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.08(t, J=7.5,3 \mathrm{H}) ; 1.57(d, J=1,3 \mathrm{H}) ; 2.16(q, J=7.5,2 \mathrm{H}) ; 3.69(s, 3$ $\mathrm{H}) ; 5.67(\mathrm{~s}, 1 \mathrm{H})$. MS: $128\left(60, \mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2}{ }^{+}\right), 114(22), 97(100), 81(13), 69(27), 59(15), 53(13)$.
(E)-3-Methyl-2-pentenoic Acid. A mixture of methyl (E)-3-methyl-2-pentenoate ($1.28 \mathrm{~g}, 10 \mathrm{mmol}$), NaOH (16.5 mmol), $\mathrm{NaHCO}_{3}(1.65 \mathrm{mmol}), \mathrm{MeOH}(5 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{I} \mathrm{ml})$ was stirred at r.t. for 20 h . Acidification of the mixture with $2 \mathrm{NH}_{2} \mathrm{SO}_{4}$ to $\mathrm{pH} 2-3$, extraction with AcOEt and workup yielded (E)-3-methyl-2-pentenoic acid (1.11 g, 97%). M.p. 4445°. JR: $3000,1690,1650,1425,1380,1300,1260,1175,1120,1075,870$. ${ }^{1}$ H-NMR: 1.08 (t, $J=7.5,3 \mathrm{H}) ; 2.19(q, J=7.5,2 \mathrm{H}) ; 2.15(s, 3 \mathrm{H}) ; 5.67(s, 1 \mathrm{H}) . \mathrm{MS}: 114\left(77, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2}{ }^{+}\right), 99(50), 85(15), 81(23)$, 69 (61), 41 (100).

N-/(E)-3-Methyl-2-pentenoylfbornane-10,2-sultam (2d). Following the procedure described for 2c, (E)-3-methyl-2-pentenoic acid was converted into its acyl chloride which served to acylate $1(860 \mathrm{mg}, 4.0 \mathrm{mmol})$ to give, after crystallization (hexane), 2d ($720 \mathrm{mg}, 58 \%$). GC (180°): 7.10. M.p. $96-97^{\circ} .[\alpha]_{D}=-80.0^{\circ},[\alpha]_{578}=-83.3^{\circ}$, $[\alpha]_{546}=-94.3^{\circ},[\alpha]_{436}=-155.6^{\circ},[\alpha]_{365}=-243.2^{\circ}\left(c=0.664, T=20^{\circ}\right)$. IR: 2970, 2880, 1680, 1630, 1330, 1270, 1130, 1060, 1040, 1030, $990 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.97(s, 3 \mathrm{H}) ; 1.10(t, J=7.5,3 \mathrm{H}) ; 1.20(s, 3 \mathrm{H}) ; 1.25-1.5(2 \mathrm{H}) ; 1.8-2.0(3$ $\mathrm{H}) ; 2.05-2.2(2 \mathrm{H}) ; 2.17(d, J=1.8,3 \mathrm{H}) ; 2.24(q, J=7.5,2 \mathrm{H}) ; 3.45(d, J=14,1 \mathrm{H}) ; 3.52(d, J=14,1 \mathrm{H}) ; 3.94(d d$, $J=7.5,5.0,1 \mathrm{H}) ; 6.35(q, J=1.8,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}): 164.62(s) ; 163.90(s) ; 114.46(d) ; 64.99(d) ; 53.08$ $(t) ; 48.09(s) ; 47.68(s) ; 44.64(d) ; 38.64(t) ; 34.06(t) ; 32.79(t) ; 26.50(t) ; 20.79(q) ; 19.84(q) ; 19.79(q) ; 11.80(q)$. MS: 311 ($0.43, \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}^{+\cdot}$), 98 (12), 97 (100), 69 (10). HR-MS: $311.1552\left(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}^{++}\right.$, calc. 311.1555).

N -(2-Butynoyl)bornane-10,2-sultam ($3, \mathrm{R}=\mathrm{Me}$). A 2 M soln. of $\mathrm{Me}_{3} \mathrm{Al}$ in hexane ($5.5 \mathrm{ml}, 11 \mathrm{mmol}$) was added dropwise to a soln. of $\mathbf{1}(2.15 \mathrm{~g}, 10 \mathrm{mmol})$ in toluene (20 ml). Stirring of the mixture for 20 min followed by addition of methyl tetrolate ($1.5 \mathrm{ml}, 15 \mathrm{mmol}$), heating of the mixture at 60° for 20 h , careful hydrolysis with $1 \mathrm{~N} \mathrm{aq}$.HCl , workup, and crystallization (EtOH) afforded $3(\mathrm{R}=\mathrm{Me} ; 1.96 \mathrm{~g}, 70 \%)$. $\mathrm{GC}\left(150^{\circ} \cdots 10^{\circ} / \mathrm{min} \rightarrow 270^{\circ}\right): 5.40$. M.p. $185-186^{\circ} .[\alpha]_{\mathrm{D}}=-115.9^{\circ},[\alpha]_{578}=-121.1^{\circ},[\alpha]_{546}=-138.6^{\circ},[\alpha]_{436}=-250.2^{\circ}, \quad[\alpha]_{365}=-443.1^{\circ} \quad(c=1.041$, $T=20^{\circ}$). IR: $3000,2970,2920,2890,2130,1660,1485,1460,1395,1375,1345,1300,1250,1160,1140,1100,1055$, 1000. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.98(\mathrm{~s}, 3 \mathrm{H}) ; 1.17(\mathrm{~s}, 3 \mathrm{H}) ; 1.3-1.5(2 \mathrm{H}) ; 1.85-2.0(3 \mathrm{H}) ; 2.10(\mathrm{~m}, 1 \mathrm{H}) ; 2.07(\mathrm{~s}, 3 \mathrm{H}) ; 2.23(\mathrm{~m}, 1 \mathrm{H}) ;$ $3.45(d, J=14,1 \mathrm{H}) ; 3.52(d, J=14,1 \mathrm{H}) ; 3.88(d d, J=5,8,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 149.79(s) ; 92.31(s) ; 72.85(s) ; 64.95$
$(d) ; 53.03(t) ; 48.45(s) ; 47.78(s) ; 44.82(d) ; 38.29(t) ; 32.84(t) ; 26.41(t) ; 20.85(q) ; 19.84(q) ; 4.24(q)$. MS: 281 $\left(0.25, \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}^{+}\right), 134(10), 108(7), 93$ (7), 79 (7), 67 (100), 55 (7). HR-MS: $281.1102\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}^{+}\right.$, calc. 281.1085).

N - $/(\mathrm{Z})$-2-Butenoyl $]$ bornane-10,2-sultam (2b). A soln. of 3 ($\mathrm{R}=\mathrm{Me} ; 2.0 \mathrm{~g}, 12 \mathrm{mmol}$) in benzene (60 ml) was stirred under H_{2} (1 atm .) in the presence of Lindlar catalyst (200 mg). After the uptake of 170 ml of H_{2}, filtration through Celite, evaporation, and medium-pressure chromatography (LiChroprep Si60, hexane/AcOEt 4:1) gave pure $\mathbf{2 b}(1.27 \mathrm{~g}, 63 \%)$. GC $\left(150^{\circ} \rightarrow 10^{\circ} / \mathrm{min} \rightarrow 270^{\circ}\right): 4.71$. M.p. $89-90^{\circ}$ (on attempted recrystallization, $\mathbf{2 b}$ underwent partial cis/trans-isomerization). $[\alpha]_{\mathrm{D}}=-85.8^{\circ},[\alpha]_{578}=-89.2^{\circ},[\alpha]_{546}=-100.8^{\circ},[\alpha]_{436}=-167.7^{\circ},[\alpha]_{365}=$ $-267.1^{\circ}\left(c=1.868, \mathrm{CHCl}_{3}, T=20^{\circ}\right)$. IR: 2980, 2920, 2880, 1680, 1640, 1440, 1330, 1265, 1230, 1210, 1160, 1130 , 1110, 1060, 1035, 985 . ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.98(s, 3 \mathrm{H}) ; 1.19(s, 3 \mathrm{H}) ; 1.3-1.5(2 \mathrm{H}) ; 1.8-2.0(3 \mathrm{H}) ; 2.05-2.25(4 \mathrm{H}) ; 3.44(d$, $J=13,1 \mathrm{H}) ; 3.50(d, J=13,1 \mathrm{H}) ; 3.94(d d, J=5,7.5,1 \mathrm{H}) ; 6.38-6.54(2 \mathrm{H}) .{ }^{13} \mathrm{C}$-NMR: $164.19(s) ; 146.64(d)$; $120.32(d) ; 64.96(d) ; 53.07(t) ; 48.29(s) ; 47.74(s) ; 44.67(d) ; 38.59(t) ; 32.82(t) ; 26.52(t) ; 20.83(q) ; 19.87(q) ;$ $16.17(q) . \mathrm{MS}: 283\left(5, \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}^{+}\right), 204(5), 135(6), 108(3), 93(3), 69(100) . \mathrm{HR}-\mathrm{MS}: 283.1245\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}^{+}\right.$, calc. 283.1242).

N -(2-Pentynoyl)bornane-10,2-sultam (3, $\mathrm{R}=\mathrm{Et}$). Following the procedure described for $3(\mathrm{R}=\mathrm{Me})$, treatment of $1(1.077 \mathrm{~g}, 5 \mathrm{mmol})$ with $\mathrm{Me}_{3} \mathrm{Al}(5.5 \mathrm{mmol})$ and methyl 2-pentynoate $[18](0.841 \mathrm{~g}, 7.5 \mathrm{mmol})$ followed by chromatography and crystallization (hexane/AcOEt $9: 1$) gave 3 ($\mathrm{R}=\mathrm{Et} ; 952 \mathrm{mg}, 65 \%$). GC (170°): 9.50. M.p. $123-124^{\circ} .[\alpha]_{\mathrm{D}}=-113.0^{\circ} .[\alpha]_{578}=-118.2^{\circ}, \quad[\alpha]_{546}=-135.4^{\circ}, \quad[\alpha]_{436}=-243.6^{\circ}, \quad[\alpha]_{365}=-428.6^{\circ} \quad(c=1.26$, $\left.T=20^{\circ}\right)$.IR: $2990,2970,2920,2890,2230,1660,1460,1415,1375,1345,1320,1300,1290,1250,1170,1145,1105$, 1065, 1055. ${ }^{\text {'H}} \mathrm{H}-\mathrm{NMR}: ~ 0.94(s, 3 \mathrm{H}) ; 1.15(s, 3 \mathrm{H}) ; 1.21(t, J=8,3 \mathrm{H}) ; 1.25-1.45(2 \mathrm{H}) ; 1.8-2.0(3 \mathrm{H}) ; 2.05(d d$, $J=14,8,1 \mathrm{H}) ; 2.22(m, 1 \mathrm{H}) ; 2.41(q, J=8,2 \mathrm{H}) ; 3.42(d, J=14,1 \mathrm{H}) ; 3.49(d, J=14,1 \mathrm{H}) ; 3.87(d d, J=5,8,1$ H). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 149.91(s) ; 97.19(s) ; 72.93(s) ; 64.87(d) ; 52.92(t) ; 48.42(s) ; 47.73(s) ; 44.73(d) ; 38.33(t) ; 32.77$ $(t) ; 26.35(t) ; 20.83(q) ; 19.80(q) ; 12.75(t) ; 12.14(q) . \mathrm{MS}: 295\left(0.41, \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}^{++}\right), 135(10), 134(10), 81(100)$, 53 (28). HR-MS: $295.1231\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}^{++}\right.$, calc. 295.1242).
$\mathrm{N}-$-(Z)-3-Methyl-2-pentenoyl]bornane-10,2-sultam (2e). A 1.5 N soln. of MeLi in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml}, 4.5 \mathrm{mmol})$ was added dropwise at -5° to a stirred suspension of CuI ($433 \mathrm{mg}, 2.27 \mathrm{mmol}$). Stirring of the mixture at -5° for additional 10 min followed by slow addition of a soln. of $3(\mathrm{R}=\mathrm{Et} ; 610 \mathrm{mg}, 2.06 \mathrm{mmol})$ in THF $(6 \mathrm{ml})$ at -95°, stirring of the mixture for further 10 min at -95°, addition of $\mathrm{MeOH}(1 \mathrm{ml})$, warming to -20° over 90 min , addition of aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. (10 ml), workup, and $\mathrm{FC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.3: 1\right)$ afforded $\mathbf{2 e}((Z) /(E)=99: 1 ; 304 \mathrm{mg}, 47 \%)$. $\mathrm{GC}\left(180^{\circ}\right): 6.15$. M.p. $^{\circ} 00-101^{\circ},[\alpha]_{\mathrm{D}}=-60.8^{\circ},[\alpha]_{578}=-63.1^{\circ},[\alpha]_{546}=-70.9^{\circ},[\alpha]_{436}=-111.8^{\circ},[\alpha]_{365}=-164.1^{\circ}$ $\left(c=1.46, T=20^{\circ}\right)$ IR: 2970, 2890, 1680, 1630, 1450, 1330, 1280, 1260, 1190, 1160, 1130, 1120, 1060, 1040, 990, 910. ${ }^{1} \mathrm{H}$-NMR: $0.98(s, 3 \mathrm{H}) ; 1.06(t, J=7.5,3 \mathrm{H}) ; 1.16(s, 3 \mathrm{H}) ; 1.28-1.45(2 \mathrm{H}) ; 1.8-1.95(3 \mathrm{H}) ; 1.93(d, J=1.5$, $3 \mathrm{H}) ; 2.0-2.15(2 \mathrm{H}) ; 2.53(d q, J=13,7.5,1 \mathrm{H}) ; 2.61(d q, J=13,7.5,1 \mathrm{H}) ; 3.43(d, J=14,1 \mathrm{H}) ; 3.48(d, J=14$, $1 \mathrm{H}) ; 3.93(d d, J=5,7.5,1 \mathrm{H}) ; 6.30(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 164.51(\mathrm{~s}) ; 163.96(\mathrm{~s}) ; 115.41(d) ; 65.03(d) ; 53.14(t) ;$ $48.105(s) ; 47.68(s) ; 44.66(d) ; 38.65(t) ; 32.81(t) ; 27.56(t) ; 26.53(t) ; 25.06(q) ; 20.78(q) ; 19.85(q) ; 12.45(q)$ MS: $311\left(0.74, \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}^{+}\right), 97(100), 96(8), 69$ (7.5). HR-MS: $311.1543\left(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}^{+}\right.$, calc. 311.1555).

N -/(E)-2-Methyl-2-butenoyl]bornane-10,2-sultam (11). Following the procedure described for 2a, acylation of $1(4 \mathrm{~g}, 18.6 \mathrm{mmol})$ with ($E)$-2-methyl-2-butenoyl chloride $(2.7 \mathrm{~g}, 23 \mathrm{mmol}$), subsequent FC (hexane/AcOEt $4: 1$), and crystallization (MeOH) furnished $11(4.52 \mathrm{~g}, 82 \%)$. M.p. $181-182^{\circ} .[\alpha]_{\mathrm{D}}=-76.0^{\circ},[\alpha]_{578}=-79.6^{\circ}$, $[\alpha]_{546}=-91.8^{\circ},[\alpha]_{436}=-174.2^{\circ},[\alpha]_{365}=-339.6^{\circ}\left(c=2.488, T=20^{\circ}\right)$. IR: $3020,2965,2885,1680,1650,1520$, $1330,1292,1285,1182,1170,1130,1110,1062,1045,1032,925 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.00(\mathrm{~s}, 3 \mathrm{H}) ; 1.23(\mathrm{~s}, 3 \mathrm{H}) ; 1.3-1.5(2 \mathrm{H})$; $1.83(d, J=7,3 \mathrm{H}) ; 1.87(s, 3 \mathrm{H}) ; 1.8-1.98(4 \mathrm{H}) ; 2.2(d d, J=7,13,1 \mathrm{H}) ; 3.39(d, J=14,1 \mathrm{H}) ; 3.4(d, J=14,1 \mathrm{H})$; $4.07(d d, J=4,8,1 \mathrm{H}) ; 6.38(q, J=7,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 172.20(s) ; 137.44(d) ; 131.37(s) ; 65.26(d) ; 53.43(t) ; 47.77$ $(s) ; 47.58(s) ; 45.10(d) ; 38.13(t) ; 33.08(t) ; 26.45(t) ; 21.22(q) ; 19.81(q) ; 14.01(q) ; 12.60(q)$ MS: $297(3.5$, $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}^{+\cdot}$), 282 (1), 233 (2), 218 (4), 205 (2.5), 190 (2), 134 (2.5), 108 (2), 84 (100), 55 (40). HR-MS: 297.1382 $\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}^{+}\right.$, calc. 297.1398).

Transformations of N-Enoylsultams 2 to Acetals 6/7. - General Procedure for Dihydroxylation/Acetalization. A 0.4 m soln. of OsO_{4} ($0.3 \mathrm{mol-equiv.} \mathrm{stabilized} \mathrm{by} \mathrm{the} \mathrm{addition} \mathrm{of} \mathrm{a} \mathrm{few} \mathrm{drops} \mathrm{of} 30 \$,$% aq. \mathrm{H}_{2} \mathrm{O}_{2}$ soln.) in t - BuOH was added at -20° to a stirred soln. of 2 or 11 (1 mol-equiv.) and N-methylmorpholine N-oxide monohydrate (2 mol-equiv.) in t-BuOH/DMF 1:1 (10 ml per mmol of 2). Stirring of the mixture at -20° for 4 to 6 h , addition of aq sat. NaHSO_{3} soln., extraction of the aq. phase with AcOEt, drying $\left(\mathrm{MgSO}_{4}\right)$ of the combined org. phases, and evaporation of the solvent furnished $4 / 5$ as an oil. The crude mixture of $4 / 5(4 \mathrm{mmol})$ was then stirred in acetone/2,2-dimethoxypropane $1: 1(20 \mathrm{ml})$ in the presence of $\mathrm{TsOH}(3 \mathrm{mg})$ at r.t. for 2 h . Successive addition of aq. sat. NaHCO_{3} soln., shaking with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$, washing of the org. phase with sat. aq. NaCl soln., drying $\left(\mathrm{MgSO}_{4}\right)$, and evaporation furnished $6 / 7$ which were analyzed by capillary GC and separated as described below. To control
the GC data, the racemic acids 9 were prepared by submitting the corresponding (E)- or (Z)-methyl enoates to the general osmylation/acetalization procedure followed by saponification. Treatment of racemic 9 with oxalyl chloride and acylation of 1 with NaH and the resulting acyl chlorides gave mixtures $6 / 7$ which, on GC analysis, showed 2 peaks superimposable with those from the reaction mixtures obtained by osmylation/acetalization of 2.
$\mathrm{N}-/(4 \mathrm{R}, 5 \mathrm{~S})-2,2,5$-Trimethyl-1,3-dioxolane-4-carbonyl]bornane-10,2-sultam (6a) and N -/(4S,5R)-2,2,5-Tri-methyl-1,3-dioxolane-4-carbonylJbornane-10,2-sultam (7a). Following the general oxidation/acetalization procedure, $2 \mathrm{a}(1.13 \mathrm{~g}, 4 \mathrm{mmol})$ was converted to a $90: 10$ mixture $6 \mathrm{a} / 7 \mathrm{a}(1.47 \mathrm{~g})$ which, on separation by medium-pressure chromatography (Merck LOBAR, hexane/AcOEt $4: 1$), furnished the major isomer $6 \mathrm{a}(1.049 \mathrm{~g}, 74 \%$). Crystallization of 6 a (770 mg , hexane) yielded colorless crystals (733 mg). GC ($150^{\circ}-10^{\circ} / \mathrm{min} \rightarrow 270^{\circ}$): 6.35. M.p. $120-121^{\circ}$. $[\alpha]_{D}=-94.7^{\circ},[\alpha]_{578}=-98.7^{\circ},[\alpha]_{546}=-111.9^{\circ},[\alpha]_{436}=-188.3^{\circ},[\alpha]_{365}=-295.8^{\circ}\left(c=2.124, T=20^{\circ}\right)$. IR: 3000, $2970,2890,1710,1460,1415,1385,1340,1270,1170,1140,1100,1060,1035,980,910,850 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.00(s, 3 \mathrm{H})$; $1.20(s, 3 \mathrm{H}) ; 1.3-1.5(2 \mathrm{H}) ; 1.42(d, J=6,3 \mathrm{H}) ; 1.47(s, 3 \mathrm{H}) ; 1.49(s, 3 \mathrm{H}) ; 1.85-2.05(3 \mathrm{H}) ; 2.11(d d, J=8,14,1 \mathrm{H}) ;$ $2.18(m, 1 \mathrm{H}) ; 3.44(d, J=14,1 \mathrm{H}) ; 3.55(d, J=14,1 \mathrm{H}) ; 3.95(d d, J=5,8,1 \mathrm{H}) ; 4.5-4.6(2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 170.00$ $(s) ; 111.06(s) ; 80.14(d) ; 75.34(d) ; 65.6(d) ; 53.18(t) ; 48.64(s) ; 47.72(s) ; 44.74(d) ; 38.40(t) ; 33.01(t) ; 27.49(q) ;$ $26.33(t) ; 25.93(q) ; 21.02(q) ; 19.86(q) ; 18.28(q) . \mathrm{MS}: 342\left(15, \mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}^{+\cdots}-\mathrm{CH}_{3}\right), 216(5), 151(5), 135(11)$, 116 (7), 115 (100), $97(5), 79(5), 67(5)$. HR-MS: $342.1385\left(\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}-\mathrm{CH}_{3}{ }^{+-}\right.$, calc. 342.1375).

The above-described medium-pressure chromatography afforded also the minor product 7 a ($153 \mathrm{mg}, 11 \%$) which was recrystallized (hexane). GC $\left(150^{\circ}-10^{\circ} / \mathrm{min} \rightarrow 270^{\circ}\right): 7.05$. M.p. $135-136^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.00(s, 3 \mathrm{H}) ; 1.15(s$, $3 \mathrm{H}) ; 1.40(\mathrm{~m}, 1 \mathrm{H}) ; 1.43(d, J=6,3 \mathrm{H}) ; 1.50(s, 3 \mathrm{H}) ; 1.54(s, 3 \mathrm{H}) ; 1.8-2.2(5 \mathrm{H}) ; 3.47(d, J=14,1 \mathrm{H}) ; 3.52(d$, $J=14,1 \mathrm{H}) ; 3.96(d d, J=5,8,1 \mathrm{H}) ; 4.25(d q, J=7,6,1 \mathrm{H}) ; 4.73(d, J=7,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 170.25(s) ; 111.52(s)$; $80.45(d) ; 65.42(d) ; 53.19(t) ; 48.60(s) ; 47.83(s) ; 44.73(d) ; 38.42(t) ; 32.92(t) ; 27.68(q) ; 26.43(t) ; 26.16(q) ;$ $20.85(q) ; 19.86(q) ; 18.04(q)$.

N -/(4R,5R)-2,2,5-Trimethyl-1,3-dioxolane-4-carbonyl]bornane-10,2-sultam (6b). Following the general oxidation/acetalization procedure, $\mathbf{2 b}(566 \mathrm{mg}, 2.0 \mathrm{mmol}$) was converted to a $91: 9$-mixture $\mathbf{6 b} / \mathbf{7 b}(745 \mathrm{mg}), \mathrm{GC}$ $\left(150^{\circ} \rightarrow 10^{\circ} / \mathrm{min} \rightarrow 270^{\circ}\right): 6.85(91 \%), 7.45(9 \%)$. Filtration through SiO_{2} (hexane/EtOAc $7: 3$) and crystallization (hexane) yiclded the major product $6 \mathrm{~b}\left(470 \mathrm{mg}, 66 \%\right.$). GC $\left(150^{\circ}-10^{\circ} / \mathrm{min} \rightarrow 270^{\circ}\right) 6.85$. M.p. $126-127^{\circ}$. $[\alpha]_{\mathrm{D}}=-69.9^{\circ},[\alpha]_{578}=-73.0^{\circ},[\alpha]_{546}=-83.4^{\circ},[\alpha]_{436}=-147.8^{\circ},[\alpha]_{365}=-251.4^{\circ}\left(c=4.092, T=20^{\circ}\right)$. IR: 2990, 2960, 2880, 1660, 1455, 1410, 1380, 1335, 1270, 1165, 1135, 1080, 1060, 855. ${ }^{\top} \mathrm{H}$-NMR: $0.98(s, 3 \mathrm{H}) ; 1.18(s, 3 \mathrm{H})$; $1.26(d . J=6,3 \mathrm{H}) ; 1.3-1.5(2 \mathrm{H}) ; 1.38(s, 3 \mathrm{H}) ; 1.59(s, 3 \mathrm{H}) ; 1.8-2.0(3 \mathrm{H}) ; 2.13(d d, J=8,14,1 \mathrm{H}) ; 2.31(\mathrm{~m}, 1 \mathrm{H})$; $3.45(d, J=14,1 \mathrm{H}) ; 3.54(d, J=14,1 \mathrm{H}) ; 3.91(d d, J=5,8,1 \mathrm{H}) ; 4.65(d q, J=7,6,1 \mathrm{H}) ; 5.21(d, J=6,1 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: 167.93(s) ; 110.24(s) ; 76.80(d) ; 74.26(d) ; 65.66(d) ; 53.12(t) ; 48.85(s) ; 47.78(s) ; 44.70(d) ; 38.53(t)$; $32.98(t) ; 26.91(q) ; 26.26(t) ; 25.38(q) ; 21.04(q) ; 19.85(q) ; 16.48(q) . \mathrm{MS}: 342\left(13, \mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}^{+}-\mathrm{CH}_{3}\right), 135$ (10), 115 (100), 59 (26), 57 (10). HR-MS: $342.1378\left(\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}^{+}-\mathrm{CH}_{3}\right.$, calc. 342.1375).
$\mathrm{N}-/(4 \mathrm{R}, 5 \mathrm{~S})-2,2$-Dimethyl-5-propyl-1,3-dioxolane-4-carbonyl]bornane-10,2-sultam (6 c) and N - $/(4 \mathrm{~S}, 5 \mathrm{R})-2,2-$ Dimethyl-5-propyl-1,3-dioxolane-4-carbonyllbornane-10,2-sultam (7c). Following the general oxidation/acetalization procedure (but extending the acetalization to 15 h), $2 \mathrm{c}(1.24 \mathrm{~g}, 4 \mathrm{mmol}$) was converted to a $91.5: 8.5$ mixture $\mathbf{6 c} / 7 \mathrm{c}(1.63 \mathrm{~g})$ which, on FC (hexane/AcOEt $4: 1$), furnished the pure major product $6 \mathrm{c}\left(1.22 \mathrm{~g}, 79 \%\right.$). GC (200°): 6.17. M.p. $110-111^{\circ} .[\alpha]_{\mathrm{D}}=-101.1^{\circ},[\alpha]_{578}=-105.3^{\circ},[\alpha]_{546}=-119.4^{\circ},[\alpha]_{436}=-200.6^{\circ},[\alpha]_{365}=-313.1^{\circ}$ $\left(c=2.602, T=20^{\circ}\right)$. IR: 2960, 2870, 1690, 1450, 1410, 1370, 1335, 1265, 1160, 1130, 1050. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.95(t$, $J=7.5,3 \mathrm{H}) ; 1.00(s, 3 \mathrm{H}) ; 1.21(s, 3 \mathrm{H}) ; 1.3-1.5(4 \mathrm{H}) ; 1.45(\mathrm{~s}, 3 \mathrm{H}) ; 1.49(s, 3 \mathrm{H}) ; 1.65-1.75(2 \mathrm{H}) ; 1.85-2.0(3 \mathrm{H}) ;$ $2.05-2.25(2 \mathrm{H}) ; 3.44(d, J=14,1 \mathrm{H}) ; 3.54(d, J=14,1 \mathrm{H}) ; 3.96(d d, J=5,8,1 \mathrm{H}) ; 4.49(q, J=7,1 \mathrm{H}) ; 4.57(d$, $J=6.5,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 170.24(\mathrm{~s}) ; 111.07(\mathrm{~s}) ; 78.97(\mathrm{~d}) ; 78.65(\mathrm{~d}) ; 65.65(\mathrm{~d}) ; 53.22(t) ; 48.66(\mathrm{~s}) ; 47.73(\mathrm{~s}) ; 44.82$ $(d) ; 38.42(t) ; 35.00(t) ; 33.09(t) ; 27.50(q) ; 26.32(t) ; 25.90(q) ; 21.09(q) ; 19.89(q) ; 18.93(t) ; 13.94(q) . \mathrm{MS}: 370$ $\left(15, \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}^{+}-\mathrm{CH}_{3}{ }^{+}\right), 151$ (9), 143 (100), 113 (15), 85 (15), 59 (40). HR-MS: 370.1674 $\left(\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}^{+-}-\mathrm{CH}_{3}\right.$, calc. 370.1688).

Further elution furnished the more polar, minor product $7 \mathrm{c}(115 \mathrm{mg}, 8 \%) . \mathrm{GC}\left(200^{\circ}\right): 7.66$. M.p. $116-118^{\circ}$. $[\alpha]_{D}=-56.5^{\circ},[\alpha]_{578}=-58.8^{\circ},[\alpha]_{548}=-67.0^{\circ},[\alpha]_{436}=-115.4^{\circ},[\alpha]_{365}=-190.0^{\circ}\left(c=1.555, T=20^{\circ}\right)$. IR: 2980, $2960,2870,1700,1450,1375,1335,1265,1160,1130,1100,1050$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.93(t, J=7.5,3 \mathrm{H}) ; 1.00(s, 3 \mathrm{H}) ; 1.16$ $(s, 3 \mathrm{H}) ; 1.3-1.5(4 \mathrm{H}) ; 1.49(s, 3 \mathrm{H}) ; 1.54(s, 3 \mathrm{H}) ; 1.65-1.8(2 \mathrm{H}) ; 1.85-2.08(4 \mathrm{H}) ; 2.13(d d, J=7,5,14,1 \mathrm{H}) ; 3.39$ $(d, J=14,1 \mathrm{H}) ; 3.44(d, J=14,1 \mathrm{H}) ; 3.97(d d, J=5,8,1 \mathrm{H}) ; 4.23(d t, J=5.5,7.5,1 \mathrm{H}) ; 4.74(d, J=7.5,1 \mathrm{H})$. ${ }^{13}$ C-NMR: $170.49 ; 111.50 ; 80.63 ; 78.97 ; 65.34 ; 53.15 ; 48.50 ; 47.73 ; 44.61 ; 38.32 ; 34.33 ; 32.86 ; 27.56 ; 26.38 ; 26.07$; $20.70 ; 19.84 ; 18.77 ; 13.85$. MS: $370\left(18, \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}^{+-}-\mathrm{CH}_{3}\right), 143$ (100), 113 (11), 85 (18), 59 (46). HR-MS: $370.1679\left(\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}^{++} \mathrm{CH}_{3}\right.$, calc. 370.1688).
$\mathrm{N}-[(4 \mathrm{R}, 5 \mathrm{~S})-5$-Ethyl-2,2,5-trimethyl-1,3-dioxolane-4-carbonyl]bornane-10,2-sultam (6d) and $\mathrm{N}-[(4 \mathrm{~S}, 5 \mathrm{R})-5$ -Ethyl-2,2,5-trimethyl-1,3-dioxolane-4-carbonyljbornane-10,2-sultam (7d). Following the general oxidation/acetalization procedure (but extending the acetalization to 4 h at 50°), 2 d ($137 \mathrm{mg}, 0.44 \mathrm{mmol}$) was converted to a $95: 5$
mixture 6d/7d which, on FC (hexane/AcOEt 4:1), furnished the less polar, major product $\mathbf{6 d}$ ($105 \mathrm{mg}, \mathbf{6 3 \%}$). GC (200 ${ }^{\circ}$: 5.92. M.p. $122-123^{\circ} .[\alpha]_{D}=-97.6^{\circ},[\alpha]_{578}=-101.7^{\circ},[\alpha]_{546}=-115.6^{\circ},[\alpha]_{436}=-197.9^{\circ},[\alpha]_{365}=$ $-319.2^{\circ}\left(c=2.905, T=20^{\circ}\right)$ IR: 2980, 2880, 1705, 1455, 1410, 1375, 1335, 1270, 1165, 1130, 1090, 1055, 990. ${ }^{1} \mathrm{H}$-NMR: $0.99(s, 3 \mathrm{H}) ; 1.00(t, J=7.5,3 \mathrm{H}) ; 1.20(s, 3 \mathrm{H}) ; 1.30(s, 3 \mathrm{H}) ; 1.32-1.4(2 \mathrm{H}) ; 1.45(\mathrm{~s}, 3 \mathrm{H}) ; 1.60(s, 3 \mathrm{H})$; $1.77-2.0(5 \mathrm{H}) ; 2.12(d d, J=7.5,14,1 \mathrm{H}) ; 2.23(\mathrm{~m}, 1 \mathrm{H}) ; 3.44(d, J=14,1 \mathrm{H}) ; 3.54(d, J=14,1 \mathrm{H}) ; 3.96(d d, J=5$, $8,1 \mathrm{H}) ; 4.90(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$-NMR: $169.61(\mathrm{~s}) ; 111.15(\mathrm{~s}) ; 85.38(\mathrm{~s}) ; 81.86(\mathrm{~d}) ; 65.98(\mathrm{~d}) ; 53.38(t) ; 48.62(s) ; 47.74(\mathrm{~s})$; $44.74(d) ; 38.77(t) ; 33.12(t) ; 32.99(t) ; 28.24(q) ; 28.18(q) ; 26.35(t) ; 21.72(q) ; 21.07(q) ; 19.88(q) ; 7.85(q)$. MS: 370 (18, $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}^{+}{ }_{-} \mathrm{CH}_{3}$), 310 (25), 143 (53), 112 (26), 85 (100), 59 (77). HR-MS: 370.1690 $\left(\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}^{+}-\mathrm{CH}_{3}\right.$, calc. 370.1688).

Further elution gave a 70:30 mixture $\mathbf{6 d} / 7 \mathbf{d}(26 \mathrm{mg})$, showing the following properties of $7 \mathrm{~d}: \mathrm{GC}\left(200^{\circ}\right): 7.82$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.99(\mathrm{~s}, 3 \mathrm{H}) ; 1.00(t, J=7.5,3 \mathrm{H}) ; 1.15(\mathrm{~s}, 3 \mathrm{H}) ; 1.23(\mathrm{~s}, 3 \mathrm{H}) ; 1.3-1.4(2 \mathrm{H}) ; 1.44(\mathrm{~s}, 3 \mathrm{H}) ; 1.62(\mathrm{~s}, 3 \mathrm{H})$; $1.7-2.07(5 \mathrm{H}) ; 2.07-2.3(2 \mathrm{H}) ; 3.45(d, J=14,1 \mathrm{H}) ; 3.54(d, J=14,1 \mathrm{H}) ; 3.97(d d, J=5,8,1 \mathrm{H}) ; 5.03(s, 1 \mathrm{H})$. $\mathrm{N}-[(4 \mathrm{R}, 5 \mathrm{R})-5-E t h y l-2,2,5-$ trimethyl-1,3-dioxolane-4-carbonyl/bornane-10,2-sultam (6e) and $\mathrm{N}-/(4 \mathrm{~S}, 5 \mathrm{~S})-5-$ Ethyl-2,2,5-trimethyl-1,3-dioxolane-4-carbonyljbornane-10,2-sultam (7e). Following the general oxidation/acetalization procedure, $\mathbf{2 e}(198 \mathrm{mg}, 0.635 \mathrm{mmol})$ was converted to a $90: 10$ mixture $6 \mathrm{e} / 7 \mathrm{e}$ which, on FC (hexane/ AcOEt 17:3) gave the less polar, major product $6 d$ ($165 \mathrm{mg}, 67 \%$). GC (200°): 5.40. M.p. (hexane) $135-136^{\circ}$. $[\alpha]_{\mathrm{D}}=-59.0^{\circ},[\alpha]_{578}=-61.6^{\circ},[\alpha]_{546}=-70.1^{\circ},[\alpha]_{436}=-121.3^{\circ},[\alpha]_{365}=-198.4^{\circ}\left(c=2.38, T=20^{\circ}\right)$. IR: 2980, $2970,2880,1700,1455,1410,1380,1340,1265,1165,1130,1090,1055,990,925,860 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 0.88(t, J=7.5,3$ $\mathrm{H}) ; 0.92(\mathrm{~s}, 3 \mathrm{H}) ; 1.14(\mathrm{~s}, 3 \mathrm{H}) ; 1.25-1.6(3 \mathrm{H}) ; 1.40(\mathrm{~s}, 3 \mathrm{H}) ; 1.43(\mathrm{~s}, 3 \mathrm{H}) ; 1.50(\mathrm{~s}, 3 \mathrm{H}) ; 1.70(d q, J=14,7.5,1 \mathrm{H})$; $1.8-2.0(3 \mathrm{H}) ; 2.07(d d, J=7.5,14,1 \mathrm{H}) ; 2.17(m, 1 \mathrm{H}) ; 3.42(d, J=14,1 \mathrm{H}) ; 3.51(d, J=14,1 \mathrm{H}) ; 3.95(d d, J=5$, $8,1 \mathrm{H}) ; 4.82(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 168.88(\mathrm{~s}) ; 110.51(\mathrm{~s}) ; 85.06(\mathrm{~s}) ; 83.18(\mathrm{~d}) ; 66.08(\mathrm{~d}) ; 53.37(t) ; 48.53(\mathrm{~s}) ; 47.70(\mathrm{~s}) ;$ $44.72(d) ; 38.78(t) ; 33.10(t) ; 29.16(t) ; 27.97(q) ; 27.93(q) ; 26.30(t) ; 24.46(q) ; 21.05(q) ; 19.85(q) ; 8.08(q)$. MS: $370\left(3.62, \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}^{+-}-\mathrm{CH}_{3}\right.$), 310 (8), 143 (49), 135 (32), 112 (28), 109 (9), 107 (17), 97 (10), 96 (9), 93 (25), 91 (9), 86 (12), 85 (100), 79 (16), 69 (14), 67 (16), 59 (78), 57 (14), 55 (21). HR-MS: $370.1697\left(\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}^{+}-\mathrm{CH}_{3}\right.$, calc. 370.1688).

Further elution afforded the more polar, minor product $7 \mathrm{e}(9 \mathrm{mg}, 4 \%)$. $\mathrm{GC}\left(200^{\circ}\right): 7.00$. M.p. (hexane) 149-151 ${ }^{\circ}$.IR: $3000,2980,2890,1710,1450,1410,1380,1370,1340,1270,1239,1195,1135,1060,910 .{ }^{1} \mathrm{H}-\mathrm{NMR}:$ $0.90(t, J=7.5,3 \mathrm{H}) ; 0.93(s, 3 \mathrm{H}) ; 1.08(s, 3 \mathrm{H}) ; 1.1-1.25(2 \mathrm{H}) ; 1.25-1.5(1 \mathrm{H}) ; 1.40(s, 3 \mathrm{H}) ; 1.42(s, 3 \mathrm{H}) ; 1.52(s$, $3 \mathrm{H}) ; 1.75(d q, J=14,7.5,1 \mathrm{H}) ; 1.8-2.0(4 \mathrm{H}) ; 2.09(d d, J=7.5,14,1 \mathrm{H}) ; 3.49(d, J=14,1 \mathrm{H}) ; 3.52(d, J=14,1$ $\mathrm{H}) ; 3.97(d d, J=5,8,1 \mathrm{H}) ; 5.00(s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 168.62(\mathrm{~s}) ; 110.36(\mathrm{~s}) ; 84.27(\mathrm{~s}) ; 83.12(\mathrm{~d}) ; 65.44(\mathrm{~d}) ; 53.12(t)$; $48.23(s) ; 47.75(s) ; 44.46(d) ; 38.19(t) ; 32.79(t) ; 29.50(t) ; 28.10(q) ; 27.93(q) ; 26.41(t) ; 24.09(q) ; 20.60(q) ;$ $19.86(q) ; 7.87(q) . M S: 370\left(3.5, \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}^{+}-\mathrm{CH}_{3}\right), 356(2), 310(6), 143$ (35), 135 (25), 112 (27), 107 (14), 93 (20), 86 (10), 85 (100), 79 (13), 67 (14), 59 (87), 57 (19), 55 (25). HR-MS: $370.1687\left(\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}^{+}-\mathrm{CH}_{3}\right.$, calc. $370.1688)$.
$\mathrm{N}-/(4 \mathrm{R}, 5 \mathrm{~S})-2,2,4,5-T e t r a m e t h y l-1,3$-dioxolane-4-carbonyl/bornane-10,2-sultam (12) and $\mathrm{N}-/(4 \mathrm{~S}, 5 \mathrm{R})$ -2,2,4,5-Tetramethyl-1,3-dioxolane-4-carbonyljbornane-10,2-sultam (13). Following the general procedure, 11 (60 $\mathrm{mg}, 0.2 \mathrm{mmol}$) was oxidized at -20° for 42 h and acetalized for 1.5 h to give 60% of unchanged 11,12 and $13(24 \%$ and 16% which were not assigned). GC (180°): 4.46 (60%), 8.89 (24%), 9.28 (16%).

Another oxidation of 11 was carried out following a similar procedure but oxidizing $11(119 \mathrm{mg}, 0.4 \mathrm{mmol})$ at r.t. for 7 h to give, after acetalization, a $1.3: 1$ mixture $\mathbf{1 2 / 1 3}$ (not assigned, $91 \mathrm{mg}, 63 \%$). GC $\left(180^{\circ}\right), 9.32(55 \%)$, $9.72(41 \%)$ IR: $3000,2970,2890,1678,1460,1348,1170,1150,1127,1110,1062 .{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}): 0.97(s, 2.6$ $\mathrm{H}) ; 1.00(s, 3.4 \mathrm{H})$; $1.18(s, 2.6 \mathrm{H}) ; 1.21(s, 3.4 \mathrm{H}) ; 1.3-1.42(22 \mathrm{H}) ; 1.48(s, 2.6 \mathrm{H}) ; 1.49(s, 3.4 \mathrm{H}) ; 1.8-2.1(10 \mathrm{H})$; 3.3-3.6 (4 H); 3.95-4.1 (2 H); 4.24 ($q, J=6.5,1.2 \mathrm{H}) ; 4.54(q, J=6.5,0.8 \mathrm{H}) . \mathrm{MS}: 356\left(4, \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}^{+}-\mathrm{CH}_{3}\right)$, 263 (9), 216 (8), 190 (1), 151 (1), 129 (100), 99 (9), 71 (37), 59 (22).

Nondestructive Removal of the Auxiliary Group. - Methyl (4R,5S)-2,2,5-Trimethyl-1,3-dioxolane-4-carboxylate (10a). A mixture of $6 \mathrm{a}(355 \mathrm{mg}, 0.994 \mathrm{mmol})$ and $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}(355 \mathrm{mg}, 8.46 \mathrm{mmol})$ in THF/ $\mathrm{H}_{2} \mathrm{O} 2: 1(6 \mathrm{ml})$ was stirred at r.t. for 13 h . Addition of $\mathrm{H}_{2} \mathrm{O}$, extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, drying $\left(\mathrm{MgSO}_{4}\right)$ of the org. phases, and evaporation furnished 1 ($205 \mathrm{mg}, 96 \%$). The aq. phase was acidified to $\mathrm{pH} 2-3$ with 1 N HCl , saturated with NaCl and extracted with AcOEt. Drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation of the extracts furnished 9 a (146 mg) which was treated with a slight excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$. Evaporation of the ether and bulb-to-bulb distillation of the residue afforded 10 ($144 \mathrm{mg}, 83 \%$ from 6a). B.p. (bath) $90-110^{\circ} / 70$ Torr, which was purified by prep. GC (Carlo Erba Fractovap $2400,15 \mathrm{~mm} \times 2 \mathrm{~m}, 10 \%$ Carbowax on Chromosorb $W, 1 \mathrm{~kg} \mathrm{~N}_{2} / \mathrm{cm}^{2}, 100^{\circ}$). GC (60°): 2.95 . $[\alpha]_{\mathrm{D}}=+18.9^{\circ},[\alpha]_{578}=+19.7^{\circ},[\alpha]_{546}=+22.7^{\circ},[\alpha]_{436}=+41.9^{\circ},[\alpha]_{365}=+71.8^{\circ}\left(c=1.240, T=20^{\circ}\right) ;[10 \mathrm{~b}]:[\alpha]_{\mathrm{D}}$ (enantiomer of 10a) $=-18.7^{\circ}\left(c=4.1, \mathrm{CHCl}_{3}, T=20^{\circ}\right.$). IR (film): 2990, 2960, 2940, 1765, 1740, 1440, 1380, 1370, 1290, 1250, 1205, 1170, 1125, 1100, 850. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.43(d, J=6,3 \mathrm{H}) ; 1.44(s, 3 \mathrm{H}) ; 1.47(s, 3 \mathrm{H}) ; 3.75(s, 3 \mathrm{H})$;
$4.03(d, J=8,1 \mathrm{H}) ; 4.17(d q, J=8,6,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 170.88(s) ; 110.55(s) ; 80.32(d) ; 75.04(d) ; 52.31(q) ; 27.08$ $(q) ; 25.63(q) ; 18.43(q)$. MS: $159\left(100, \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}{ }^{+}-\mathrm{CH}_{3}\right), 130$ (8), 115 (45), 99 (28), 85 (12), 73 (78), 59 (85). HR-MS: $159.0661\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{4}{ }^{+}-\mathrm{CH}_{3}\right.$, calc. 159.0657).
($4 \mathrm{~S}, 5 \mathrm{R}$)-2,2,5-Trimethyl-1,3-dioxolane-4-methanol ($\mathbf{8 b}$). A mixture of $\mathbf{6 b}(255 \mathrm{mg}, 071 \mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(40$ $\mathrm{mg}, 1.05 \mathrm{mmol}$) in THF (5 ml) was stirred at r.t. for 1 h . Quenching of the mixture by adding several drops of sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ soln., drying (MgSO_{4}), careful evaporation, and trituration of the residue with pentane gave the recovered 1 as an insoluble, solid residue ($125 \mathrm{mg}, 82 \%$). Evaporation of the pentane solution and bulb-to-bulb distillation of the residue furnished $8 \mathrm{~b}(78 \mathrm{mg}, 75 \%)$. $\mathrm{GC}\left(60^{\circ}\right): 2.10$. B.p. (bath) $100-110^{\circ} / 10 \mathrm{Torr}$. $[\alpha]_{\mathrm{D}}=-52.5^{\circ}$, $\left.[\alpha]_{578}=-54.6^{\circ},[\alpha]_{546}=-61.8^{\circ},[\alpha]_{436}=-102.7^{\circ},[\alpha]_{365}=-156.5^{\circ}\left(c=3.667, T=20^{\circ}\right) ;[] 4\right]:[\alpha]_{\mathrm{D}}$ (enantiomer of $8 \mathbf{b})=+52^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}, T=20^{\circ}\right) .1 \mathrm{R}: 3580,3470,2980,2930,2880,1450,1380,1370,1360,1305,1240,1170$, 1085, 1035, 990, 930, 900, 855, 830. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.25(d, J=7,3 \mathrm{H}) ; 1.37(s, 3 \mathrm{H}) ; 1.48(s, 3 \mathrm{H}) ; 1.92(t, J=6,1 \mathrm{H})$; $3.61(t, J=6,2 \mathrm{H}) ; 4.15(q, J=6,1 \mathrm{H}) ; 4.37(d q, J=6,7,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 107.99(s) ; 78.01(d) ; 72.56(d) ; 61.81$ (t); $28.12(q) ; 25.38(q) ; 14.46(q) . \mathrm{MS}: 131\left(44, \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{3}{ }^{+}-\mathrm{CH}_{3}\right), 115(32), 101(8), 71(23), 61(14), 59(100), 58$ (15), 57 (16), 45 (13). HR-MS: $131.0713\left(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{3}{ }^{+}-\mathrm{CH}_{3}\right.$, calc. 131.0708).
($4 \mathrm{~S}, 5 \mathrm{~S}$)-2,2-Dimethyl-5-propyl-1,3-dioxolane-4-methanol (8c). Using the procedure described for $\mathbf{8 b}$, reductive cleavage of $6 \mathrm{c}(771 \mathrm{mg}, 2.0 \mathrm{mmol})$ with LiAlH_{4} gave recovered $1(374 \mathrm{mg}, 87 \%)$ and, after bulb-to-bulb distillation, 8c ($285 \mathrm{mg}, 82 \%$). GC (50°): 9.80. B.p. (bath) $100-110^{\circ} / 1$ Torr. $[\alpha]_{\mathrm{D}}=-27.9^{\circ},[\alpha]_{578}=-29.0^{\circ}$, $[\alpha]_{546}=-32.5^{\circ},[\alpha]_{436}=-50.8^{\circ}, \quad[\alpha]_{365}=-71.9^{\circ}\left(c=4.192, T=20^{\circ}\right) ; \quad[15]:[\alpha]_{\mathrm{D}}=-27.8^{\circ} \quad\left(c=5.7, \mathrm{CHCl}_{3}\right.$, $T=25^{\circ}$). 1 R (film): $3450,2980,2960,2930,2870,1460,1375,1365,1245,1215,1165,1100,1040,985,900,860,830$. ${ }^{\mathrm{t}} \mathrm{H}$-NMR: $0.93(t, J=7.5,3 \mathrm{H}) ; 1.39(s, 3 \mathrm{H}) ; 1.41(s, 3 \mathrm{H}) ; \mathrm{I} .3-1.65(4 \mathrm{H}) ; 2.40(\mathrm{br} . s, 1 \mathrm{H}) ; 3.57(d d, J=4.5,11.5$, $1 \mathrm{H}) ; 3.73(\mathrm{~m}, 1 \mathrm{H}) ; 3.75(\mathrm{dd}, J=3,11.5,1 \mathrm{H}) ; 3.85(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 108.49(\mathrm{~s}) ; 81.48(\mathrm{~d}) ; 76.62(d) ; 62.01(t) ;$ $35.09(t) ; 27.28(q) ; 26.94(q) ; 19.16(t) ; 14.02(q) . \mathrm{MS}: 159\left(37, \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{3}{ }^{+}{ }^{-} \mathrm{CH}_{3}\right), 143$ (13), 85 (16), 81 (44), 59 (100), 57 (24), 55 (32). HR-MS: $159.1018\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{3}{ }^{+}-\mathrm{CH}_{3}\right.$, calc. 159.1021).
(4R,5S)-5-Ethyl-2,2,5-trimethyl-1,3-dioxolane-4-carboxylic Acid (9d). Using similar conditions as described for the saponification of $\mathbf{6 a}, \mathbf{6 d}(100 \mathrm{mg}, 0.26 \mathrm{mmol})$ was hydrolyzed at r.t. within 7 h to give $\mathbf{1}(55 \mathrm{mg}, 98 \%)$ and $\mathbf{9 d}$ ($46 \mathrm{mg}, 94 \%$) which was sublimed at $55-60^{\circ}$ (bath) $/ 0.5$ Torr to give colorless crystals (37 mg). M.p. $49-50^{\circ}$ ([19]: $\left.46.5-49^{\circ}\right) \cdot[\alpha]_{\mathrm{D}}=+33.3^{\circ},[\alpha]_{578}=+34.9^{\circ},[\alpha]_{546}=+39.4^{\circ},[\alpha]_{436}=+66.9^{\circ},[\alpha]_{365}=+103.2^{\circ}\left(c=0.619, T=20^{\circ}\right)$; $[19]:[\alpha]_{\mathrm{D}}=+26.0^{\circ}\left(c=0.84, \mathrm{CHCl}_{3}, T=20^{\circ}\right) .1 \mathrm{R}: 3300-2500$ (br.), 3000, 2940, 1780, 1740, 1460, 1380, 1360, 1130, 1100, 1000, 875. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.04(t, J=7.5,3 \mathrm{H}) ; 1.24(s, 3 \mathrm{H}) ; 1.42(s, 3 \mathrm{H}) ; 1.58(s, 3 \mathrm{H}) ; 1.75-1.95(2 \mathrm{H})$; $4.46(s, 1 \mathrm{H}) ; 6.4-7.5(1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 173.03(s) ; 109.80(s) ; 83.58(s) ; 80.13(d) ; 32.20(t) ; 28.40(q) ; 27.16(q)$; $21.91(q) ; 8.06(q)$ MS: $173\left(28, \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4}{ }^{+}-\mathrm{CH}_{3}\right), 116(12), 113(48), 95(17), 85(16), 71$ (12), $59(100), 57(20), 55$ (12). HR-MS: $173.0821\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4}{ }^{+}-\mathrm{CH}_{3}\right.$, calc. 173.0814).
($4 \mathrm{R}, 5 \mathrm{R}$)-5-Ethyl-2,2,5-trimethyl-1,3-dioxolane-4-carbaxylic Acid $(9 \mathrm{e})$. Using the conditions described for the saponification of 6 a , hydrolysis of $6 \mathrm{e}(96 \mathrm{mg}, 0.249 \mathrm{mmol})$ at r.t. for 5.5 h gave $1(54 \mathrm{mg}, 100 \%)$ and $9 \mathrm{e}(44 \mathrm{mg}$, 94%) which, on sublimation at $50-60^{\circ}$ (bath)/0.5 Torr, gave colorless crystals (31 mg). M.p. $96-97^{\circ}$ ([16]: 93-94.5 $)$. $[\alpha]_{\mathrm{D}}=+58.9^{\circ},[\alpha]_{578}=+61.1^{\circ},[\alpha]_{546}=+69.1^{\circ},[\alpha]_{436}=+113.3^{\circ},[\alpha]_{365}=+168.0^{\circ}\left(c=1.485, T=20^{\circ}\right) ;[16]:$ $[\alpha]_{\mathrm{D}}=+58.6^{\circ}\left(c=3.0, \mathrm{CHCl}_{3}, T=20^{\circ}\right)$. IR: 3440, 3400-2700(br.), 2980, 2940, 2880, 1775, 1730, 1520, 1380, 1350, 1130, 1090, 1020, 980, 930, 900, 860. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.92(t, J=7.5,3 \mathrm{H}) ; 1.37(\mathrm{~m}, 1 \mathrm{H}) ; 1.38(\mathrm{~s}, 3 \mathrm{H}) ; 1.42(\mathrm{~s}, 3 \mathrm{H}) ; 1.50$ $(s, 3 \mathrm{H}) ; 1.65($ sext., $J=7.5,1 \mathrm{H}) ; 4.42(s, 1 \mathrm{H}) ; 7.3-8.9(1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 172.48(\mathrm{~s}) ; 109.55(\mathrm{~s}) ; 83.15(\mathrm{~s}) ; 82.53(d)$; $28.16(t) ; 27.97(q) ; 27.10(q) ; 23.30(q) ; 7.37(q) . \mathrm{MS}: 173\left(7, \mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4}{ }^{+}-\mathrm{CH}_{3}\right), 161$ (14), 113 (17), $85(10), 73$ (9), 59 (100), 57 (10). HR-MS: $173.0819\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4}^{+-}-\mathrm{CH}_{3}\right.$, calc. 173.0814).

REFERENCES

[1] M. Schröder, Chem. Rev. 1980, 80, 187.
[2] S. G. Hentges, K.B. Sharpless, J. Am. Chem. Soc. 1980, 102, 4263; T. Yamada, K. Narasaka, Chem. Lett. 1986, 131 ; M. Tokles, J. K. Snyder, Tetrahedron Lett. 1986, 27, 3951; R. Annunziata, M. Cinquini, F. Cozzi, L. Raimondi, S. Stefanelli, ibid. 1987, $28,3139$.
[3] L. Colombo, C. Gennari, G. Poli, C. Scolastico, Tetrahedron Lett. 1985, $26,5459$.
[4] S. Hatakeyama, Y. Matsui, M. Suzuki, K. Sakurai, S. Takano, Tetrahedron Lett. 1985, 26, 6485.
[5] W. Oppolzer, XI Conference on Isoprenoids, Jachranka/Poland, Sept. 1985, Auturnn Meeting of the Swiss Chemical Society, Bern, October 1985; Abstr. OV I-4, p. 10; 193rd American Chemical Society National Meeting, Denver/Colorado, April 1987.
[6] W. Oppolzer, Tetrahedron 1987, 43, 1969.
[7] W. Oppolzer, R. J. Mills, M. Réglier, Tetrahedron Lett. 1986, 27, 183.
[8] W. Oppolzer, G. Poli, Tetrahedron Lett. 1986, 27, 4717.
[9] a) S. Servi, J. Org. Chem. 1985, 50, 5865; b) G. Guanti, L. Banfi, E. Narisano, J. Chem. Soc., Chem. Commun. 1986, 136; c) G. Fronza, C. Fuganti, P. Grasselli, S. Servi, J. Org. Chem. 1987, 52, 2086.
[10] a) I. Dyong, H. Bendlin, Chem. Ber. 1978, 111, 1677; b) G. Fronza, C. Fuganti, P. Grasselli, G. Marinoni, Tetrahedron Lett. 1979, 3883 ; c) P. DeShong, C. M. Dicken, J. M. Leginus, R. R. Whittle, J. Am. Chem. Soc. 1984, 106, 5598.
[11] W. Ladner, Chem. Ber. 1983, 116, 3413.
[12] A. Tanaka, K. Yamashita, Chem. Lett. 1981, 319.
[13] M. Viscontini, W.F. Frei, Helv. Chim. Acta 1972, 55, 574.
[14] C. Fuganti, P. Grasselli, S. Servi, C. Zirotti, Tetrahedron Lett. 1982, $23,4269$.
[15] H. Meyer, D. Seebach, Liebigs Ann. Chem. 1975, 2261.
[16] R.K. Hill, S.-J. Yan, Bioorg. Chem. 1971, 1, 446.
[17] M. Vandewalle, J. Van der Eycken, W. Oppolzer, C. Vulioud, Tetrahedron 1986, 42, 4035.
[18] E. C. Taylor, R. L. Robey, D. K. Johnson, A. McKillop, Org. Synth. 1976, 55, 73.
[19] M. Kinoshita, H. Hamazaki, M. Awamura, Bull. Chem. Soc. Jpn. 1978, 51, 3595; M. Kinoshita, M. Arai, K. Tomooka, M. Nakata, Tetrahedron Lett. 1986, 27, 1811.

